α -Hydroxyalkyl(benzyl)furazans and α -hydroxyalkyl(benzyl)furoxans Synthesis and reactivity

A. N. Blinnikov, A. S. Kulikov, * N. N. Makhova, and L. I. Khmel'nitskii

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 117913 Moscow, Russian Federation. Fax: 007 (095) 135-5328

A general and simple preparative method for the synthesis of α -hydroxyalkyl(benzyl)furazan and -furoxan derivatives is proposed. The method involves reduction of acyl or ethoxycarbonyl substituents in these heterocyclic compounds with NaBH₄ in ethanol. Based on the alcohols thus prepared, a number of previously unknown functional derivatives (α -nitroxyalkyl-, α -haloalkyl-, and α -azidoalkylfurazans and -furoxans) have been synthesized.

Key words: furazans, furoxans, reduction, nucleophilic substitution.

Until recently, the set of known functionally substituted furazans and furoxans, which permit target-directed syntheses of various derivatives of these heterocyclic compounds as possible biologically active materials, has been quite limited. Compounds with substituents containing a carbonyl group in the a-position could serve as suitable objects for extending the range of accessible furazan and furoxan derivatives. The development of convenient methods for the preparation of these compounds¹⁻³ allowed us to begin a systematic study of their reactivities. Previously, bromination⁴ and nitrosation⁵ of acetylfurazans and acetylfuroxans have been studied. The present paper is devoted to the investigation of the reduction of the acyl and ethoxycarbonyl substituents in these heterocyclic compounds to α -hydroxyalkyl and α -hydroxybenzyl groups and to the synthesis of various functional derivatives of furazan and furoxan based on the compounds obtained.

Only a few examples of the reduction of carbonylcontaining groups in the derivatives of furazan and furoxan have been reported; in all cases, NaBH₄ was used as the reducing agent. For example, treatment of 3,4-dibenzoylfuroxan (1a) with NaBH₄ in ethanol led to the reduction of both carbonyl groups in this compound to hydroxyl groups and gave 3,4-bis(α-hydroxybenzyl)furoxan (2a) in 75% yield. When the mixed anhydride obtained in situ from 4-phenylfurazan-3-carboxylic acid and ethyl chlorocarbonate was reduced with the same reagent, 3-hydroxymethyl-4-phenylfurazan was isolated in 91 % yield. The carbonyl group was reduced to an alcoholic group in 60 % yield when 5-bromo-4,4-dimethyl-6-oxocyclohexanofuroxan was treated with NaBH₄ in dioxane. However, no examples of reduction of alkoxycarbonyl groups in furazan and furoxan derivatives have been reported. Data on the reactivities of hydroxyl-containing derivatives of these heterocyclic compounds are also lacking.

Based on this information, we decided to study in more detail the reduction of acetyl and benzyl groups in furazan and furoxan derivatives to the corresponding α-hydroxy-derivatives through the action of NaBH₄ and also to study the possibility of using this reagent for the reduction of the ethoxycarbonyl groups in these heterocyclic derivatives to hydroxymethyl groups. NaBH₄ is known to be usually relatively ineffective for the reduction of ester groups; therefore, this reduction is normally carried out using LiAlH₄.9 However, the furoxan ring is unstable in the presence of LiAlH₄. 10 At the same time, 4-nitro- and 2,4-dinitrophenyl esters of aliphatic carboxylic acids are known¹¹ to be successfully reduced with NaBH₄ to their hydroxymethyl derivatives, which has been explained by the strong electron-withdrawing effect of nitroa omatic compounds. Since both furazan and furoxan rings exhibit clear-cut electron-withdrawing effects, 12 it might have been expected that alkoxycarbonylfurazans and -furoxans would be reduced with NaBH4 to the corresponding α -hydroxymethyl derivatives.

In fact, we found that this reagent in ethanol is effective for the transformation of both acyl and ethoxycarbonyl groups in furazan and furoxan derivatives to the corresponding α -hydroxyalkyl or α -hydroxybenzyl substituents (Scheme 1). The reduction of ethoxycarbonyl groups in furoxans was found to require merely a somewhat greater amount of the reductive agent than the reduction of acyl derivatives. It should be noted that to isolate the final reaction products, alcohols of the furazan and furoxan series, the reaction mixture needs in all cases to be treated with excess HCl, which is necessary for the hydrolysis of the borates of the obtained alcohols. The position of the N-oxide oxygen atom in the furoxan ring has no effect on the ability of the acyl and ethoxycarbonyl groups to be reduced. For example, in the case of 3,4-diacetylfuroxan (1b), both carbonyl-containing fragments are reduced. The reduction of both the 3- and 4-ethoxycarbonyl substituents in 4-amino-3-ethoxycarbonylfuroxan (1h) and 4-ethoxycarbonyl-3-methylfuroxan (1i) (Scheme 1) also occurs successfully.

Scheme 1

The large number of hydroxy-derivatives 2a—i obtained made it possible to study their reactivities. For example, using the hydroxymethyl derivative 2i as an example we showed that the hydroxy group is readily nitrated by a mixture of HNO₃ and H₂SO₄ to give the corresponding nitroxymethyl derivative (3i). We also found that the amino group in amino-derivatives 2c and 2h can be oxidized by peroxide oxidants to a nitro group (the hydroxyl fragment remaining unaffected), thus yielding nitro derivatives 2j and 2k (Scheme 2).

Scheme 2 O₂NOCH HOCH HNO H₂SO 3i 2i ОН ОН ĊHR3 CHR3 O₂N [O] **2c:** $R^3 = Me$; 2j: $R^3 = Me$; $2k: R^3 = H$ **2h**: $R^3 = H$

In addition, the hydroxyl group in the alcohols synthesized is successfully replaced by a chlorine atom through the action of the SOCl₂—pyridine complex in

CH₂Cl₂ or in dioxane to give previously unknown α -chloroalkyl or α -chlorobenzyl furazan and furoxan derivatives (4a—c,f—k) in preparative yields (Scheme 3).

Scheme 3

The development of a fairly convenient method for the synthesis of α -chloroalkyl and α -chlorobenzyl derivatives of furazan and furoxan makes it possible to substantially extend the set of accessible functional derivatives of these heterocyclic compounds. Scheme 4 shows several examples of replacement of the chlorine atom by various nucleophiles (1, N₃, NHPh). It is obvious that these transformations by no means exhaust the possibili-

Scheme 4

CI Me CH₂ MeCN N N O 5i

H₂N CI | N₃ CHMe | H₂N | CHMe | O_n | O_n | O_n | Gc:
$$n = 1$$
 | Gf: $n = 0$

es.
É
izan denvatives
furazan
and
of furoxan and furazan
5
Characteristics o
Charac
<u></u>
Table

Compound	Yield (%)	M.p./°C	Rf	Found	Found (%) Calculated	(%	Molecular formula	IR, v/cm ⁻¹	MS, m/z (I _{rel} (%))	14N (15N) NMR (CD ₃ COD ₃),
				J	Ξ	z				o, J/n.c
						ج ا	Furoxans			
3,4-Bis(1-hydroxyethyl)- furoxan (2b)	92	Oila	0.496					1385, 1460, 1635, 2955, 2995		
4-Amino-3-(1-hydroxy- ethyl)furoxan (2c)	84	102—103 (from CHCl ₃)	0.35	32.65 33.09	4.59	29.27 28.96	C4H7N3O3	1630, 2945, 2990, 3005, 3235, 3320, 3390, 3415	145 [M ⁺](24), 115(22), 97(31), 85(14), 70(100)	
4-Amino-3-(α-hydroxy- benzyl)furoxan (2d)	4	116-118	0.46^{b}	\$1.81 \$2.17	4.38	20.03 20.28	$C_9H_9N_3O_3$	1320, 1380, 1450, 1485, 1625, 2940, 2985, 3310, 3395		
4-Amino-3-hydroxy- methylfuroxan (2h)	53	106108	0.26	27.42 27.48	4.10 3.84	30.73	$C_3H_5N_3O_3$	1620, 1640, 2960, 3240, 3340, 3435	131 [M*1(25), 101(19), 83(25), 74(33), 71(41), 70(100)	
4-Hydroxymethyl- 3-methyfuroxan (2i)	85	Oila	0.416				. ,	1610, 2930, 2980, 3430	130 [M ⁺](100), 100(86), 70(37), 69(90)	
3-(1-Hydroxyethyl)- 4-nitrofiiroxan (2i)	4	Oila	0.28¢				-	1360, 1460, 1635, 2940, 3005, 3430		
3-Hydroxymethyl- 4-nitrofuroxan (2k)	81	Oil ^a	0.55°					1360, 1580, 1640, 2860, 2940, 3400	162 [M ⁺ +1](2), 115(25), 86(4), 85(100), 84(72)	
3-Methyl-4-nitroxy- methylfuroxan (3i)	∞	13-16	0.26 ^d	27.35 27.44	3.13	23.72 24.00	C ₄ H ₅ N ₃ O ₅	1280, 1620, 1650, 2930–2970, 3030	175 [M ⁺](24), 145(16), 130(16), 115(24), 113(40), 100(20), 99(88), 97(20)	14N; -50.0 br. (ONO ₂), -19.0 br. (N _{ring})
3,4-Bis(α-chlorobenzyl)- furoxan (4a)	8	Oila	0.64^{b}					1380, 1455, 1600, 1650, 2795, 3055		
3,4-Bis(1-chloroethyl)- furoxan (4b)	89	Olla	0.576					1390, 1470, 1520, 1620, 2900, 2955, 3010		¹⁴ N; -13.3 br. (N _{ring})
4-Amino-3-(1-chloroethyl)- furoxan (4c)	72	12-69	0.42^{b}	29.55 29.37	3.79	25.26 25.69	C4H6CIN3O2	1385, 1450, 1490, 1610, 1645, 2980, 3250, 3330, 3430		
4-Amino-3-chloromethyl- furoxan (4h)	38	101-102	0.476	24.30 24.09	2.77 2.68	28.28 28.10	$C_4H_3CIN_3O_2$	1615, 3245, 3340, 3430		¹⁵ N; -337.50 (NH ₂)
4-Chloromethyl- 3-methylfuroxan (4i)	70	Oil ^a	0.24							1620, 1630, 2860, 2930, 2980, 3040 2980, 3040
3-(1-Chloroethyl)- 4-nitrofuroxan (4j)	98	Oila	0.50					1360, 1580, 1635, 1650, 2940, 3030		

Compound	Yield (%)	M.p./°C	R _ſ	Eound Calculated	1 lated (%)	(6	Molecular formula	IR, v/cm ¹	MS, m/z (I _{rel} (%))	14N (15N) NMR (CD ₃ COD ₃),
				C	Ŧ	z				o, J/nz
3-Chloromethyl- 4-nitrofuroxan (4k)	51	Oila	0.676		`			1340, 1570, 1620. 2820, 2980, 3040		¹⁴ N; -34,7 br. (NO ₂)
4-Iodomethyl- 3-methylfuroxan (5i)	8	Oit _a	0.48^{d}							$^{15}N^{c}$: $-22.75 \text{ (N}_{ring}-2)$, $^{5}J_{15N-1H}(CH_{2}) = 3.5$, $^{-12.63} \text{ (N}_{ring}-5)$, $^{3}J_{15N-1H}(CH_{3}) = 3.3$
4-Amino-3-(1-azidoethyl)- furoxan (6c)	54	Dec. without melting ^a	0.526					1320, 1370, 1390, 1450, 1490, 1550, 1610, 2125, 2940, 2990, 3360, 3450		14N/: -159.57 (-NNN), -137.31 (-NNN), -17.4 br. (N _{ring})
						Яu	Furazans			
3,4-Bis(1-hydroxyethyl)- furazan (2e)	06	Oila	0.536				• .	1380, 1420, 1455. 2950, 2995		
4-Amino-3-(1-hydroxyethyl)- furazan (2f)	93	73 (from CHCl ₃)	0.316	37.02 37.21	5.33	32.74 32.56	C ₄ H ₇ N ₃ Q ₂	1325, 1380, 1420, 1450, 1530, 1635, 2945, 2995		
4-Amino-3-(α-hydroxy- benzyl)furazan (2g)	87	$90-92^a$ (from CHCl ₃)	0.718					1330, 1405, 1450, 1495, 1520, 1625, 3050, 3300, 3400		
4-Amino-3-(1-chloroethyl)- furazan (4f)	99	47—48 C (from CHCl ₃ + C ₆ H ₁₄)	0.48b	32.38 32.56	4.22	28.13 28.48	C ₄ H ₆ CIN ₃ O	1380, 1440, 1530, 1630, 2940, 2960, 3330, 3460		
4-Amino-3-(α-chlorobenzyl)- furazan (4g)	54	63–65 (from C ₆ H ₁₄)	0.726	\$1.12 \$1.57	3.75	19.88 20.04	C ₉ H ₈ ClN ₃ O	1360, 1440, 1460. 1495, 1525, 1635, 3070, 3340, 3480		
4-Amino-3-(1-azido- ethyl)furazan (6f)	38	Dec. without melting ^a	0.486					1390, 1445, 1530, 1640, 2125, 2940, 3000, 3360, 3440		14N: -347 br. (NH ₂), -164.0 (-NNN), -136.2 (-NNN), 22.9 br. (N _{ring})
4-Amino-3- $\{(\alpha$ -phenylamino)- 67 benzyl $\}$ furazan (7g)	. 67	98—99 (from C ₆ H ₁₄)	0.55 ^d	66.80 66.65	5.56	21.70	C ₁₅ H ₁₄ N ₄ O	1320, 1435, 1500, 1605, 1625, 3040, 3060, 3365, 3460		
										1010

^a The compound could not be isolated in an analytically pure state. ^bCHCl₃: PrⁱOH = 9:1. ^cPhH: EtOAc = 3:1. ^dCHCl₃, ^eCCl₄: CHCl₃ = 1:1. ^gCHCl₃: MeCOMe = 3:1.

Table 2. ¹H NMR spectra of the furoxan and furazan derivatives

Com-	Solvent			······································	δ, <i>J</i> /Hz		
pound		R	X	R ³	Me [Ph]	CH [CH ₂]	OH [NH ₂]
			Furo	x a n s	(n = 1)		
2b	CDCI ₃	4-MeCH[OH]	ОН	Me	1.42 d (${}^{3}J = 1.0$), 1.43 d (${}^{3}J = 1.0$), 1.53 d (${}^{3}J = 6.5$), 1.55 d (${}^{3}J = 6.5$)	4.88 q (${}^{3}J$ = 1.0), 4.89 q (${}^{3}J$ = 1.0), 4.92 q (${}^{3}J$ = 6.5), 4.97 q (${}^{3}J$ = 6.5)	4.48 br.s
2c	CD ₃ COCD ₃	4-NH ₂	ОН	Me	1.47 d	4.97 q	5.16 s [5.53 br.s]
2d	CD ₃ CN	4-NH ₂	ОН	Ph	7.38—7.51 m	5.90 s [5.10 br.s]	4.85 br. s
2h	CDCl ₃ + CF ₃ COOD	4-NH ₂	ОН	Н		[4.57 s]	5.34 br.s [OH+NH ₂]
2i	CD ₃ COCD ₃	3-Me	ОН	Н	2.01 s	[4.63 s]	4.68 br.s
2j	CD ₃ COCD ₃	4-NO ₂	ОН	Me	1.56 d ($^{3}J = 3.5$)	$5.2 \text{ q } (^3J = 3.5)$	4.80 br.s
2k	CD ₃ COCD ₃	4-NO ₂	ОН	Н		[4.77 s]	4.41 br.s
3i	CD ₃ COCD ₃	3-Me	ONO_2	Н	2.17 s	[5.52 s]	
4a	CD ₃ CN	4-PhCHCl	CI	Ph	[7.33—7.48 m]	6.20 s, 6.26 s, 6.30 s, 6.33 s	
4b	CD ₃ COCD ₃	4-MeCHCI	Cl	Me	1.73—1.83 m	5.65 q (2 H, ${}^{3}J = 6.3$) 6.04 q (${}^{3}J = 6.9$), 6.10 q (${}^{3}J = 6.9$)),
4c	CDCl ₃	4-NH ₂	CI	Me	$1.82 \text{ d} (^3J = 4.5)$	$5.08 \text{ q } (^3J = 4.5)$	[4.82 br.s]
4h	CD ₃ COCD ₃	4-NH ₂	CI	Н		[4.68 s]	[5.95 br.s]
4i	CD ₃ COCD ₃	3-Me	Cl	Н	2.24 s	[4.77 s]	
4j	CDCl ₃	4-NO ₂	Cl	Me	$1.89 \text{ d} (^3J = 3.4)$	$5.54 \text{ q } (^3J = 3.4)$	
4k	CD ₃ COCD ₃	4-NO ₂	CI	Н		[5.09 s]	
5i	CDCl ₃	3-Me	1	Н	2.20 s	[4.26 s]	
6c	CDCl ₃	4-NH ₂	N_3	Me	$1.50 \text{ d} (^3J = 2.6)$	4.79 q,	[4.88 s]
			Fura	zans	(n = 0)		
2e	CD ₃ COCD ₃	MeCH[OH]	ОН	Me	1.61 d ($^3J = 3.3$)	$5.22 \text{ q } (^3J = 3.3)$	4.20 br.s
2f	CD ₃ COCD ₃	NH ₂	ОН	Me	1.5 d ($^3J = 2.2$)	$5.12 \text{ q } (^3J = 2.2)$	5.05 br.s
2g	CD ₃ COCD ₃	NH ₂	ОН	Ph	[7.34—7.54 m]	$6.20 \text{ d} (^3J = 2.3)$	$5.57 \text{ d } (^3J = 2.3)$ [5.37 br.s]
4f	CDCl ₃	CDCI ₃	NH ₂	Cl	Me	1.94 d ($^3J = 2.3$)	$5.39 \text{ q } (^3J = 2.3)$ [4.64 s]
4g	CDCl ₃	NH_2	CI	Ph	[7.42—7.48 m]	6.33 s	[4.16 br.s]
6f	CDCl ₃	NH ₂	N_3	Me	$1.95 \text{ d} (^3J = 2.5)$	$5.39 \text{ q } (^3J = 2.5)$	[5.61 br.s]
7g	CDCI ₃	NH ₂	NHPh	Ph	[6.73—7.48 m]	5.87 s	4.52 br.s [NH ₂ +NH]

ties for the synthesis of new functionally substituted furazans and furoxans opened by this study.

It should be noted that, according to NMR spectroscopy, compounds 2b and 2e, obtained by the reduction

Table 3. ¹³C NMR spectra of the furoxan and furazan derivatives

Com-	**	,			A 10111100000 0001111111111111111111111			
pound	R	R ¹	R ²	CH ₃ [Ph]	δ, J/Hz CH[CH ₂]	C _{ring} -3	C _{ring} -4	
				Furoxans (n = 1)			
2b ^a	4-MeCH(OH)	ОН	Me	19.38, 19.50, 19.81, 20.13	61.49, 61.71, 62.39, 62.41	117.79, 117.96	159.56, 159.67	
2d ^a	4-NH ₂	ОН	Ph	[117.60, 126.14, 128.84, 128.90, 138.93]	67.37	111.99	156.72	
$3i^b$	3-Me	ONO_2	Н	7.46	[63.61]	111.56	151.02	
4a ^a	4-PhCHCl	Cl	Ph	[128.23—136.19]	51.68, 51.72, 53.70, 53.82	115.35, 118.20	156.68, 156.92	
4b ^{<i>b</i>}	4-MeCHCl	Cl	Me	20.00, 20.23, 21.66, 21.72	46.27, 46.29, 47.62, 48.01	115.33, 115.51	157.47, 157.54	
4c ^c	4-NH ₂	Cl	Me	21.11	46.01	111.21	155.49	
4 h ^{<i>b</i>}	4-NH ₂	CI	Н		[32.74]	109.23	157.19	
4i ^a	3-Me	Cl	Н	7.78	[35.07]	96.60	155.61	
4k ^b	4-NO ₂	CI	Н		$ \begin{cases} 1 J_{13C-1H} = \\ 1 & 160 \end{cases} $	${}^{110.23}_{{}^{2}J_{13C-1H}(CH_{2})} = $ = 5.2	$ \begin{array}{l} 158.80 \\ (^{1}J_{13C-1H}(NO_{2}) = \\ = 18.1) \end{array} $	
5i ^c	3-Me	J	Н	7.93 (${}^{1}J_{13C-1H}$ = 133)	$[-13.25]$ ${}^{2}J_{13C-1H}(CH_{3}) = [-155]$	$111.85 = (^2J_{13C-^{1}H}(CH_3) = 7.4)$	$ \begin{array}{l} 155.53 \\ (^2J_{13C-1H}(CH_2) = \\ = 4.8) \end{array} $	
6c ^c	4-NH ₂	N_3	Me	15.86	51.22	110.63	155.32	
				Furazans ((n = 0)			
2e ^c	МеСН(ОН)	ОН	Me	21.49, 21.51	61.46, 61.60	156.18, 156	5.35	
2 ſ [¢]	NH ₂	ОН	Me	22.17	62.37	151.03, 156.40 (C _{ring} -		
$2g^b$	NH ₂	ОН	Ph	[127.16, 128.67, 128.95, 129.44, 129.73]	69.17	150.19, 156.37 (C _{ring} -		
4f°	NH_2	CI	Me	22.17	46.61	147.57, 154.27 (C _{ring} -		
4 g ^c	NH ₂	Cl	Ph	[127.28, 127.73, 129.06, 129.47]	52.51	146.44, 154.13 (C _{rmg} -		
6 f ^b	NH_2	N_3	Me	22.60	47.17	149.34. 155.79 (C _{ring} -		
7g ^c	NH ₂	127.00, 12 129.27, 12		[114.20, 119.68, 127.00, 128.76, 129.27, 129.36, 137.95, 145.93]	54.48	147.99, 154.65 (C _{ring} —NH ₂)		

Note. Solvents: "CD3CN, bCD3COCD3, cCDCl3.

of diacetylfuroxan and diacetylfurazan, as well as the products of the replacement of the hydroxyl groups in 2b and in 3,4-bis(α-hydroxybenzyl)furoxan 2a by chlorine (compounds 4b and 4a) are mixtures of diastereomers consisting of racemates and meso-forms.

Experimental

IR spectra were recorded on a UR-20 spectrometer for pellets or for thin films between pieces of KBr glass. ¹H, ¹³C, ¹⁴N, and ¹⁵N NMR spectra were obtained on a Bruker AM-300 instrument operating at 300, 75.5, 21.5, and 21.5 MHz, respectively. Chemical shifts were measured relative to internal tetramethylsilane (for ¹H and ¹³C NMR) or to external MeNO₂ (for ¹⁴N and ¹⁵N NMR). Mass spectra were obtained on a Varian MAT CH-6 instrument at an ionization energy of 70 eV. TLC was carried out on Silufol UV-254 plates; the eluents used are listed below Table 1. The main characteristics of the compounds synthesized, including data of their IR spectra, mass spectra, and ¹⁴N and ¹⁵N NMR spectra, are given in Table 1, and the ¹H and ¹³C NMR spectral data are presented in Tables 2 and 3, respectively.

General procedure for the preparation of hydroxy-derivatives by the reduction of furazan and furoxan carbonyl derivatives (2b-2i). A carbonyl derivative (10 mmol; or 8 mmol for compounds 1b, 1e, 1h, and 1i, or 20 mmol for 1d) was added at 10-15 °C to NaBH₄ (0.23 g, 6 mmol) in 30 mL of anhydrous ethanol (in the cases of compounds 1d, 1h, and 1i, the reactants were mixed in the reverse order). The reaction mixture was stirred at this temperature for 10 min (or for 1 h in the case of compound 1h), concentrated HCl (0.7 mL) was added, and the mixture was stirred for an additional 1-2 h at ~20 °C. Ether (60 mL) and then powdered MgSO₄ (1 g) were added, and the mixture was stirred for 10 min and filtered. The filtrate was concentrated using a rotary evaporator to afford a reduction product, which was additionally purified by recrystallization or reprecipitation in those cases where it was a solid.

3-(1-Hydroxyethyl)-4-nitrofuroxan (2j). A 90% solution of H_2O_2 (4.0 mL) was added to anhydrous CH_2Cl_2 (60 mL), and at a temperature of no more than 20 °C, trifluoroacetic anhydride (25 mL) was added dropwise. At ~20 °C, 4-amino-3-(1-hydroxethyl)furoxan **2c** (2.9 g, 20 mmol) was added in one portion to the resulting solution. The reaction mixture was stirred for 2 h at 20 °C, diluted with water (50 mL), and-extracted with CH_2Cl_2 (3×50 mL). The extracts were washed with water (3×100 mL) and dried with MgSO₄. Evaporation on a rotary evaporator gave compound **2j**.

3-Hydroxymethyl-4-nitrofuroxan (2k). 4-Amino-3-hydroxymethylfuroxan 2h (1.0 g, 7.6 mmol) was added in one portion to a mixture of 90% H_2O_2 (7 mL) and conc. H_2SO_4 (7 mL), while the temperature was maintained below 18 °C. The mixture was stirred for 1 h at 20 °C. Then water (33 mL) was added dropwise at a temperature of no more than 10 °C. The mixture was extracted with EtOAc (3×25 mL), and the extracts were washed with water (2×50 mL) and dried with MgSO₄. Evaporation on a rotary evaporator gave compound 2k.

3-Methyl-4-nitroxymethylfuroxan (3i). 4-Methyl-3-hydroxymethylfuroxan (2i) (1.0 g, 7.7 mmol) was added dropwise over a period of 5 min to a mixture of fuming HNO₃ (2 mL) and conc. H₂SO₄ (2 mL), while the temperature was maintained below 0 °C. The reaction mixture was stirred for 15 min at 5 °C, and water (20 mL) was added dropwise at a temperature of no more than 10 °C. The reaction mixture was extracted with CHCl₃ (3×10 mL), and the extracts were washed with water (3×20 mL) and dried with MgSO₄. Evaporation on a rotary evaporator gave compound 3i.

General procedure for the preparation of chloro-derivatives by the replacement of the hydroxyl groups in furoxan and furazan derivatives (4a-c, f-k). A hydroxy-derivative (4 mmol of compounds 2a-2c, 2f, or 2g, 9 mmol of compounds 2i-2k, or 12 mmol of compound 2h) was added with stirring and cooling with ice (at a temperature of no more than 12-15 °C) to a solution of pyridine (2.43 mL, 30 mmol) and SOCl₂ (2.16 mL, 30 mmol) in 15 mL of dry CH₂Cl₂ (compounds 2a, 2b, 2i, 2j, and 2k) or in 15 mL of dry dioxane (compounds 2c, 2f, 2g, and 2h). The reaction mixture was stirred for 15 min, and 0.5 mL of water (compounds 2c, 2f-2k; method A) or 15 mL of water (compounds 2a, 2b; method B) was added dropwise with stirring. In method A, the reaction mixture was concentrated on a rotary evaporator to a small volume, and the residue

was extracted with EtOAc ($6 \times 20 \text{ mL}$) and filtered through a thin SiO_2 layer. Evaporation on a rotary evaporator afforded a chloro-derivative, which, in some cases, was additionally purified by recrystallization. In method B, the organic layer was separated, washed with 15 mL of water, dried with MgSO₄, and concentrated on a rotary evaporator. The residue was dissolved in a 1:1 petroleum ether—benzene mixture and then the product was isolated as in method A.

4-Iodomethyl-3-methylfuroxan (5i). 4-Methyl-3-chloromethylfuroxan **4i** (0.30 g, 2 mmol) was added with stirring to a solution of NaI (0.60 g, 4 mmol) in anhydrous acetone (4 mL). The reaction mixture was stirred for 30 min and concentrated on a rotary evaporator. The residue was washed with ether (2×10 mL) on a filter, and the ethereal layer was filtered through a thin SiO_2 layer. Evaporation on a rotary evaporator gave compound **5i**.

General procedure for the preparation of azido-derivatives of furoxan and furazan (6c, 6f). Sodium azide (1.95 g, 30 mmol) was added to a solution of 1-chloroethyl derivatives 4c and 4f (10 mmol) in MeCN (40 mL). The reaction mixture was stirred for 10 h at 65–70 °C and poured into 60 mL of water. Extraction with CHCl₃ (4×45 mL), drying with MgSO₄, and evaporation of the solvent on a rotary evaporator gave the azido-derivatives.

4-Amino-3-[\alpha-(phenylamino)benzyl]furazan (7g). Aniline (0.37 g, 4 mmol) was added to a solution of 4-amino-3-(α -chlorobenzyl)furazan (4g) (0.42 g, 2 mmol) in benzene (5 mL). The mixture was stirred for 72 h at 20 °C until 4g disappeared, according to TLC and concentrated on a rotary evaporator. The residue was treated with water and allowed to stand until the oil crystallized. The solid product was filtered off, washed with water, triturated with hexane on a filter, and dried in air

References

- 1. N. N. Makhova, A. N. Blinnikov, and L. I. Khmel'nitskii, *Mendeleev Commun.*, 1995, 56.
- V. Ovchinnikov, A. N. Blinnikov, N. N. Makhova, and L. I. Khmel'nitskii, *Mendeleev Commun.*, 1995, 58.
- A. S. Kulikov, N. N. Makhova, T. I. Godovikova, S. P. Golova, and L. I. Khmel'nitskii, *Izv. Akad. Nauk, Ser. Khim.*, 1994, 679 [Russ. Chem. Bull., 1994, 43, 630 (Engl. Transl.)].
- A. B. Sheremetev, A. S. Kulikov, and L. I. Khmel'nitskii, *Izv. Akad. Nauk, Ser. Khim.*, 1993, 744 [Russ. Chem. Bull., 1993, 42, 708 (Engl. Transl.)].
- 5. A. S. Kulikov, N. N. Makhova, and L. I. Khmel nitskii, *Izv. Akad. Nauk, Ser. Khim*, 1994, 485 [*Russ. Chem. Bull.*, 1994, **43**, 445 (Engl. Transl.)].
- J. H. Boyer and S. E. Ellzey, J. Am. Chem. Soc., 1960, 82, 2525.
- 7. A. M. Gasco, R. Fruttero, G. Sorba, and A. Gasco, *Liebigs Ann. Chem.*, 1991, 1211.
- 8. J. Ackrell and A. J. Boulton, *J. Chem. Soc.*, *Perkin Trans.*, 1, 1973, 351.
- 9. E. R. H. Walker, Chem. Soc. Rev., 1976, 5, 23.
- H. Meloy and D. A. Shirley, J. Org. Chem., 1967, 32, 1255
- S. Takahashi and L. A. Cohen, J. Org. Chem., 1970, 35, 1505.
- L. I. Khmel'nitskii, S. S. Novikov, and T. I. Godovikova, Khimiya Furoksanov. Reaktsii i Primenenie [The Chemistry of Furoxans. Reactions and Applications.], Nauka, Moscow, 1983, p. 215 (in Russian).

Received December 25, 1995; in revised form February 26, 1996